简介:摘要:细胞核的精确分割是病理诊断的重要基础,为了进一步提高细胞核分割的准确性,本文提出基于ConvNeXt改进的ConvUnet细胞核分割网络。首先,将ConvNeXt网络扩写为编码器-解码器结构,其次在跳跃连接结构中加入ECA通道注意力机制,去除原始病理图片中的冗余信息,加强对重要细胞核特征的关注度,最终提高模型的分割性能。在Monuseg数据集上的实验结果表明,ConvUnet网络的Dice系数和IoU分别达到79.27%和65.98%,与现有细胞核分割方法相比有更好的分割效果。
基于改进ConvNeXt的细胞核图像分割