学科分类
/ 1
1 个结果
  • 简介:针对行星齿轮传动故障诊断中的信号故障特征微弱、特征提取困难等问题,提出了基于自适应聚合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD)和样本(SampleEntropy,SE)的行星齿轮箱故障特征提取方法。首先,针对EEMD结果存在较大的盲目性和主观性等问题,提出自适应EEMD方法;然后,使用此方法将行星齿轮箱振动信号分解为若干个固有模态函数(IntrinsicModeFunctions,IMF)分量,通过相关性分析选取含有齿轮状态特征信息的IMF分量并对信号进行重构,计算重构信号样本值,以此判断行星齿轮箱的运行状态;最后,对行星齿轮箱故障模拟试验台采集的2种状态振动信号的自适应EEMD样本进行求解,并与直接样本、EEMD样本等特征提取方法对比,验证了自适应EEMD样本具有更好的分类能力。

  • 标签: 行星齿轮箱 聚合经验模态分解(EEMD) 样本熵(SE) 特征提取