简介:摘要目的对基于深度学习的ResNet50-OC模型彩色眼底照片质量多分类的效果进行评估。方法纳入2018年7月在南京医科大学附属明基医院收集的彩色眼底照片PD数据集及EyePACS数据集,临床医师根据眼底图像的成像质量将其大致分为质量较好、曝光不足、曝光过度、边缘模糊和镜头反光5类。在训练集中,每个类别包含1 000张图像,其中800张选自EyePACS数据集,200张选自PD数据集;在测试集中,每个类别包含500张图像,其中400张选自EyePACS数据集,100张选自PD数据集。训练集总计5 000张图像,测试集总计2 500张图像。对图像进行归一化处理和数据扩增。采用迁移学习方法初始化网络模型的参数,在此基础上对比当前深度学习主流分类网络VGG、Inception-resnet-v2、ResNet和DenseNet,选取准确率和Micro F1值最优的网络ResNet50作为分类模型的主网络。在ResNet50训练过程中引入One-Cycle策略加快模型收敛速度,得到最优模型ResNet50-OC并将其应用于眼底照片质量多分类,评估ResNet50与ResNet50-OC对眼底照片进行多分类的准确率和Micro F1值。结果ResNet50对彩色眼底照片质量多分类准确率和Micro F1值明显高于VGG、Inception-resnet-v2、ResNet34和DenseNet。ResNet50-OC模型训练15轮对眼底图像质量多分类准确率为98.77%,高于ResNet50训练50轮的98.76%;ResNet50-OC模型训练15轮对眼底图像质量多分类的Micro F1值为98.78%,与ResNet50训练50轮的Micro F1值相同。结论ResNet50-OC模型可以准确、有效地对彩色眼底照片质量进行多分类,One-Cycle策略可减少训练次数,提高分类效率。
简介:摘要目的构建循环生成对抗网络(CycleGAN)对模糊、曝光不足、曝光过度等低质量眼底图像进行质量提升,并对其效果进行评估。方法从EyePACS数据集中分别选取700张高质量和700张低质量眼底图像作为本研究的数据集。对数据集图像进行裁剪并统一缩放至512×512分辨率。采用2个生成模型和2个判别模型构建CycleGAN,生成模型根据输入的低/高质量眼底图像生成匹配的高/低质量图像,判别模型判别原始图像和生成图像。将本研究提出的算法与限制对比度自适应直方图均衡化(CLAHE)、动态直方图均衡化(DHE)、带色彩恢复的多尺度Retinex(MSRCR)3种图像增强算法的结果进行视觉定性评估,并采用清晰度、BRISQUE、色度、饱和度作为定量指标进行评估。应用糖尿病视网膜病变(DR)诊断网络对原图及不同算法增强图像进行诊断;并比较其准确度和特异度。结果CycleGAN算法对模糊、曝光不足、曝光过度3类低质量眼底图像的增强均取得最优效果,增强后的眼底图像对比度高、色彩丰富,视盘、血管结构清晰。CycleGAN算法增强的图像清晰度仅次于CLAHE算法;BRISQUE质量分数为0.571,比CLAHE、DHE和MSRCR算法分别高出10.2%、7.3%和10.0%;色度和饱和度分别为103.03、123.24,均高于其他算法;该算法增强100张图像仅需35 s,仅次于CLAHE算法,在速度上具有明显优势。CycleGAN算法增强的图像在DR诊断中的准确率和特异度分别为96.75%和99.60%,均较原图有所提高。结论CycleGAN可有效提升模糊、曝光不足、曝光过度眼底图像的质量,并有效提高计算机辅助DR诊断系统的准确率,可能在眼科临床诊断中有很大的应用价值。
简介:摘要:随着时代的进步,课程标准也不断发生着改革。在新版数学课程标准改革中,进一步明确了在教学过程中要促进学生交流与合作。以小组合作的形式引领数学教学,符合小学生的心理特点以及学习情况。小组合作学习在小学课堂中是较为常见的一种学习模式,注重团队合作交流,不仅有利于激发小学生对学习数学的热情,而且对培养小学生团队意识起着积极的作用。
简介:摘要目的观察分析基于深度学习的眼底图像视盘定位与分割方法的准确性。方法在ORIGA数据集上训练和评估基于深度学习的视盘定位和分割方法。在深度学习的Caffe框架上构建深度卷积神经网络(CNN)。采用滑动窗口将ORIGA数据集的原图切割成许多小块图片,通过深度CNN判别各个小块图片是否包含完整视盘结构,从而找到视盘所在区域。为避免血管对视盘分割产生影响,在分割视盘边界之前去除视盘区域的血管。采用基于图像像素点分类的视盘分割深度网络,实现眼底图像视盘的分割。计算基于深度学习的眼底图像视盘定位与分割方法的准确性。定位准确率=T/N,T代表视盘定位正确的眼底图像数量,N代表总共用于定位的眼底图像数量。采用重叠误差(overlap error)比较视盘分割结果与实际视盘边界的误差大小。结果基于深度学习的眼底图像视盘定位方法其定位准确率为99.6%;视盘分割平均重叠误差为7.1%;对青光眼图像和正常图像的平均杯盘比的计算误差分别为0.066和0.049;每幅图像的视盘分割平均花费10 ms。结论基于深度学习的眼底图像视盘定位方法能快速并准确地定位视盘区域,同时也能够较为精准地分割出视盘边界。