摘要
支持向量机(SupportVectorMachine,简称SVM)是一种基于机器学习的模式分类算法,其在解决小样本、非线性及高维模式识别等问题中都表现出许多特有的优势。用SVM对液体火箭发动机的故障数据进行检测和诊断。通过对发动机仿真模型的9种故障数据的学习,能检测出18组故障数据中的17组,但有4组出现误报,对误报故障进行二次学习和再检测,能对这4种故障正确检测。经过对C75试车4种故障数据的学习,能正确检测其故障类型,进一步验证了该方法的正确性和可行性。
出版日期
2008年03月13日(中国期刊网平台首次上网日期,不代表论文的发表时间)