An Efficient Technique for Updating the Principal Component Analysis in Dynamic Databases

在线阅读 下载PDF 导出详情
摘要 Storageandretrievalofmultimediaobjectshasbecomearequirementformanycontemporarysystems.Forexample,givenanimagedatabase,onemaywanttoretrieveallimagesthataresimilartoaqueryimage.Asmanycontent-basedretrievaltechniquesfordigitalimageryuseafeaturevectorapproachtorepresentimagecontents,itisdesirabletoreducethedimensionalityofthedata,whilstmaintainingasmuchofitsoriginalstructure.Severaldimensionalityreductiontechniquesareavailable.ThemostpopularoneisPCA,whichworkswellforstaticdatabases.Inthispaper,wepresentanovelschemeforperformingPCA-baseddimensionalityreductionindynamicdatabases.Insteadofusingtheentiredataset,weonlyrecomputethePCAtransformmatrixontheupdatingdataset.Notethatthesizeoftheupdatingdatasetisusuallymuchsmallerthanthatoftheentiredata,thistechniquemayreducethePCAcomputationtimecomplexitywithoutlosingexactness.Inaddition,theupdatestothedatabasearebasedontheexistingdimensionality-reduceddatavectorsratherthantheoriginalhigh-dimensionaldatavectors,whichmayrelievethesystemoverheadforthemanagementoftheoriginalhigh-dimensionaldata.
机构地区 不详
出版日期 2004年02月12日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献