学科分类
/ 10
197 个结果
  • 简介:<正>在动态问题中,当一些元素按照一定的规律在确定的范围内变化时,与它相关的另一些元素的某些量或其数量关系保持不变,这类问题称为定值问题.定值问题由于不知道确定的结果,而使人难以下手,给问题解决带来困难.解决这类问题时,要善于运用辩证的观点去思考分析,在"可变"的元素中寻求"不变"的量.一般可

  • 标签: 问题解决 数量关系 动态问题 求解策略 不知道 平面直角坐标系
  • 简介:一般教材求连续随机变量的分布函数均采用分布函数的定义来求.笔者认为这种方法在计算上有很多麻烦,但对初学者来说较难掌握,笔者经过大量的计算和总结发现可用不定积分法求连续随机变量的分布函数,它省时省事,且较易掌握.设ξ为连续随机变量,F(x)为ξ的分布函数,Φ(x)为ξ的分布密度函数,且

  • 标签: 连续型随机变量 分布密度函数 不定积分法 二时 大时
  • 简介:首先建立了第二类Chebyshev多项式Un(x)的Landau's不等式.利用Un(x)的正交性,建立了代数多项式pn(x)的加权Landau's不等式,并且指出其不等式的系数在某种意义上是最好可能的.

  • 标签: Landau's型不等式 第二类Chebyshev函数 正交性 权函数
  • 简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.

  • 标签: Lupas-Baskakov算子 ORLICZ空间 逼近 强逆不等式
  • 简介:生产系统随着设备磨损往往会失控或发生故障,给企业带来巨大损失.本文以备货生产系统为研究对象,根据其成品先入库后销售的特点,建立基于故障率的非周期的生产、维修、库存整合模型.模型以最小化单位总成本为目标,基于萤火虫算法的邻域结构改进粒子群算法,求解系统的最优生产率和维修策略,并分析比较不合格产品率、失控率对目标函数值和最优策略的影响.

  • 标签: 备货型生产系统 故障率 非周期整合模型 粒子群算法 萤火虫算法
  • 简介:polarizableCarnot组的一些新性质被给。由在thepolarizableCarnot上选一个合适的常数为非分叉Dirichlet问题的一个班的一个重要答案,组被构造。因此,correspondingnon同类的Dirichlet问题的多答案性质被证明,在famousAlexandrov-Bakelman-Pucci类型估计的L~Q标准可能的最好被讨论。

  • 标签: 可极化 CARNOT群 非散度型方程 非平凡解
  • 简介:本文探讨了鞅分析在具有红利支付的n次幂欧式期权定价中的应用,即用鞅分析的技巧与方法研究了在标的资产服从分数布朗运动的条件下具有红利支付的n次幂欧式期权定价问题,并获得了其公式。丰富了已有期权定价结果,使期权定价公式更有利于实际的应用。

  • 标签: 等价鞅测度 n次幂型欧式期权 红利 布朗运动
  • 简介:证明了指数超椭圆方程x^2=p^2m-p^m+n+1无解(x,p,m,n),其中x,m,n∈N^+,m〉n〉1,p∈P.上述结果部分解决了组合论中关于可逆Abel差集的Ma猜想.

  • 标签: 指数型超椭圆方程 正整数解 PELL方程
  • 简介:文[2]研究了一般的具有正负系数的一阶中立时滞微分方程的振动性,建立了一切解振动的充要条件。本文就其特殊情况进行了计算机算法的研究,得到了依据方程的系数经过计算机处理就能判定方程⑴的振动性。

  • 标签: 振动性 中立型时滞微分方程 充分条件 算法
  • 简介:本文考虑的是备货商品的生产与优化管理。商品的生产过程是随机可控的。需求过程是一个根据销售价格高低来控制的随机过程。本文主要研究是这样一个系统的利润函数。

  • 标签: 备货型商品 泊松生产 利润函数
  • 简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.

  • 标签: 时滞系统 Lyapunov—Krasovskii泛函鲁棒稳定性线性矩阵不等式(LMI) 反馈控制
  • 简介:本文讨论了在纵向数据下,运用非参数估计方法构造了连续单参数指数族参数的经验贝叶斯检验函数,证明了所提出的经验贝叶斯检验函数的渐近最优性,并获得了它的收敛速度.

  • 标签: 纵向数据 经验贝叶斯检验 渐近最优性 收敛速度