简介:求出了(n-3)-filiform李代数的极大环面,并证明了(n-3)-filiform李代数是可完备化的.
简介:论证了零级υ值代数体函数w(z)在满足某些条件下T方向的存在性,同时给出了最大型Borel方向与T方向之间的关系.
简介:文[1]提出一个问题:"如果李代数L的所有幂零子代数都是交换子代数,那么L是否在它的每个理想上可分?"并给出一个反例说明该问题一般不成立.本文就是从分析该反例入手,说明问题不成立的原因,并给出该问题成立的条件,从而在一般情况下给出基本李代数的一个等价刻画.
简介:设N是Banach空间X上的套,AlgN是相应的套代数。本文证明了,若套N中存在一个非平凡元在X中可补,那么AlgN上的每个可加Jordan高阶导子和每个可加三重Jordan高阶导子都是高阶导子。
简介:(满分100分,90分钟完成)(A)基础知识达标检测一、选择题(每小题4分,共40分)1.一1{的倒数是().(A)詈(引专(c)一了8(D)一i52.如果la1=一a,那么a的取值范围是().(A)a<0(B)a≤0(C)a>0(D)a≥03.化简√(I.4l一/2)j的结果是().(A)l(B)0(c)1.4l一√2(D)j!一1.414.汁算一2x·』!的结果是().(舢一』。(引一2x’(c)一4x!(D)2x。5.下列因式分解正确的是().(A)x!一5J+6=(_+I)(Y一6)-(B)x!)一”!+Ⅵ=U(1一J)(C)1一(“+6):=(1+n+b)(1n
简介:讨论了Banach空间X中带有非局部条件的半线性发展方程.在g失去紧性的条件下,利用L^p(I;X)空间中的不动点定理,对边值问题适度解的存在性做了研究,完善和推广了已有结论.最后给出一个在偏微分方程中的例子.
简介:应用SAS/STAT估计非线性回归模型中的参数.首先,通过变量代换,把可以线性化的非线性回归模型化为线性回归模型,并用普通最小二乘法、主成分分析法和偏最小二乘法求模型中的参数和回归模型.其次,通过改良的高斯一牛顿迭代法来估计Logistic模型和Compertz模型中的参数.