简介:摘要:本文旨在探讨基于深度学习的电力系统故障预测与诊断方法。首先,介绍了电力系统故障预测与诊断的背景和意义。接着,详细阐述了深度学习的基本原理。然后,提出了一种基于深度学习的电力系统故障预测与诊断模型,并对其进行了详细的描述和分析。最后,通过实验验证了所提模型的有效性和优越性。结果表明,该模型能够准确地预测和诊断电力系统中的故障,具有很高的实用价值。
简介:摘要:电力负荷预测在电力系统规划和运行中具有重要作用。为了提高预测精度,本研究提出了一种基于深度学习的电力负荷预测模型。首先,收集并预处理了历史电力负荷数据及相关气象数据。其次,构建了包含长短期记忆网络(LSTM)和卷积神经网络(CNN)的混合模型,通过特征提取和时间序列分析相结合的方法来进行负荷预测。模型训练过程中,采用了交叉验证和超参数优化技术,以提高模型的泛化能力和稳定性。实验结果表明,相比传统预测方法,本研究所提出的深度学习模型在预测精度和鲁棒性方面均有显著提升。该研究为电力负荷预测提供了一种有效的方法,具有广泛的应用前景。
简介:摘要:电气继电保护技术在电力系统中扮演着至关重要的角色。然而,传统的继电保护技术存在一些问题,如准确性和效率方面的局限性。深度学习技术的出现为故障预测与诊断带来了新的机遇,其在数据处理和模型训练方面具有独特优势。本文提出了基于深度学习的电气继电保护故障预测方法,通过数据准备、特征提取和模型设计,实现了更精准的故障预测与诊断。未来,深度学习在电气继电保护领域的发展将面临挑战,但也将带来更多的技术创新与应用前景。
简介:摘要:电气设备在工业生产中的重要性不可忽视,然而,故障的发生可能导致生产中断和设备损坏。本研究旨在通过深度学习方法,实现电气设备故障的准确诊断与预测。通过对设备运行数据进行深入分析和学习,建立基于深度学习的模型,提高故障检测的精度和效率。本文通过探索电气设备中基于深度学习的故障诊断与预测方法,为提升设备可靠性、降低维护成本提供了新的途径。
简介:摘要:目前,我国电力系统已安装了大批以同步相量测量装置(PMU)为代表的高精度量测装置,可实现对电网运行状态的精确实时感知。同时,PMU主站存储了电网大量历史运行数据,为基于数据驱动的人工智能方法提供了数据支撑。人工智能技术中的深度学习是完全的数据驱动模型,以神经网络为代表的深度学习技术大幅提升了对数据的理解和学习能力,能够充分利用海量系统运行数据进行模型训练,避免了传统解析模型构建的局限。已有学者将深度学习应用于电力系统扰动后的频率预测与稳定控制,本论文从新能源电力系统频率特性、新能源电力系统扰动后频率预测与新能源电力系统频率控制三个方面展开综述。