学科分类
/ 1
12 个结果
  • 简介:[目的/意义]大规模肉羊畜舍人工消毒存在费时费力、覆盖不全和消毒不彻底的问题,为保持畜舍卫生和肉羊健康,本研究提出一种羊场自动导航喷药机器人.[方法]从硬件、语义分割模型和控制算法3方面设计了自动导航喷药机器人.硬件部分包括履带底盘、摄像头和折叠式喷药装置.语义分割模型部分通过引入压缩通道网络注意力(Squeeze-and-Excitation Network,SENet)和基于场景改进的十字交叉注意力(Criss-Cross Attention,CCA)模块,提出一种双注意力ENet语义分割模型(Double Attention ENet,DAENet).在控制算法方面,针对机器人在面对岔路时无法控制行进方向的问题,利用模拟真实道路的方法,在羊舍外的道路上绘出车道线,提出了道路中心点识别和车道线中心点识别两种算法来计算机器人行进过程的导航点.为了实现上述两种算法,使用了两台摄像头并设计了摄像头切换算.

  • 标签: 自动导航喷药机器人计算机视觉语义分割注意力模块中心点计算DAENet
  • 简介:摘要 : 数十年来,遥感技术一直被用作精准农业的重要数据采集工具。根据距离地面的高度,遥感平台主要包括卫星、有人驾驶飞机、无人驾驶飞机系统和地面车辆。这些遥感平台上搭载的绝大多数传感器是成像传感器,也可以安装激光雷达等其他传感器。近年来,卫星成像传感器的发展极大地缩小了基于飞机的成像传感器在空间、光谱和时间分辨率方面的差距。最近几年,作为低成本遥感平台的无人机系统的出现极大地填补了有人驾驶飞机与地面平台之间的间距。有人飞机具有飞行高度灵活、飞行速度快、载荷量大、飞行时间长、飞行限制少以及耐候性强等优势,因此在未来仍将是主要的精准农业遥感平台。本文的第 1部分概述了遥感传感器的类型和三主要的遥感平台(即卫星、有人驾驶飞机和无人驾驶飞机系统)。接下来的两部分重点介绍用于精准农业的有人机载成像系统,包括由安装在农用飞机上的消费级相机组成的系统,并详细描述了部分定制和商用机载成像系统,包括多光谱相机、高光谱相机和热成像相机。第 4部分提供了五应用实例,说明如何将不同类型的遥感图像用于精准农业应用的作物生长评估和作物病虫害管理。最后简要讨论了将不同遥感平台和成像系统用于精准农业上的一些挑战和未来的努力方向。

  • 标签: 机载成像系统 载人飞机 多光谱图像 高光谱图像 远红外图像 精准农业
  • 简介:摘要 : 植被分类是高光谱影像分类的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在 PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类的性能。试验结果表明所提出的混合特征提取方法在研究数据集 1和 2上均获得了最高的总体分类正确率,分别为 82.7%和 86.5%。与原始 PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集 1和 2上分别提高了 1.5%和 2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较,总体上空间特征获得的分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为 95.5%和 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类更具优势。本研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。

  • 标签: 高光谱影像 植被分类 光谱特征 空间特征 混合特征提取方法 分散矩阵 主成分分析